Abstract

Spectra obtained by low-energy electrospray ionization tandem mass spectrometry (ESI-MS/MS) of 34 peptides containing aspartic acids at position n were studied and unambiguously differentiated. beta-Aspartic acid yields an internal rearrangement similar to that of the C-terminal rearrangements of protonated and cationized peptides. As a result of this rearrangement, two different ions containing the N- and the C-terminal ends of the original peptide are formed, namely, the bn-1 + H2O and y"l - n + 1 - 46 ions, respectively, where e is the number of amino acid residues in the peptide. The structure suggested for the y"l - n + 1 - 46 ion is identical to that proposed for the vn ions observed upon high-energy collision-induced dissociation (CID) experiments. The intensity of these ions in the low-energy MS/MS spectra is greatly influenced by the presence and position of basic amino acids within the sequences. Peptides with a basic amino acid residue at position n - 1 with respect to the beta-aspartic acid yield very intense bn-1 + H2O ions, while the y"l - n + 1 - 46 ion was observed mostly in tryptic peptides. Comparison between the high- and low-energy MS/MS spectra of several isopeptides suggests that a metastable fragmentation process is the main contributor to this rearrangement, whereas for long peptides (40 AA) CID plays a more important role. We also found that alpha-aspartic acid containing peptides yield the normal immonium ion at 88 Da, while peptides containing beta-aspartic acid yield an ion at m/z 70, and a mechanism to explain this phenomenon is proposed. Derivatizing isopeptides to form quaternary amines, and performing MS/MS on the sodium adducts of isopeptides, both improve the relative intensity of the bn + 1 + H2O ions. Based on the above findings, it was possible to determine the isomerization sites of two aged recombinant growth proteins.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call