Abstract

The trophic ecology of bluefin tuna larvae (Thunnus thynnus) from the Balearic Sea, together with its co-existing tuna species such as albacore (T. alalunga), bullet (Auxis rochei) and little tunny (Euthynnus alletteratus) were examined by nitrogen and carbon stable isotope analyses. A total of 286 larvae were analyzed for this study, of which 72 larvae corresponded to bluefin, 57 to albacore, 81 to bullet tuna and 76 to little tunny. Tuna larvae were separated into the pre-flexion and post-flexion developmental stages. Within the size 3–9mm standard length (SL), the stable isotope of nitrogen (δ15N) showed significant differences between species where bluefin tuna larvae ranked highest. Pre-flexion bluefin tuna and little tunny larvae showed significantly higher δ15N signatures than the post-flexion larvae. This effect is attributed to a biochemical trace of maternal δ15N signatures. However, neither albacore nor bullet tuna larvae showed this pattern in δ15N signatures, possibly owing to a compensation effect between lower maternal δ15N values transmitted to pre-flexion larvae and the early increase of δ15N values in post-flexion stages. One way ANOVA showed significant differences between species in the stable isotope ratio of carbon (δ13C) values, which suggests specific differences of carbon sources. Furthermore, a similar significant ontogenic effect between δ13C signatures of pre-flexion and post-flexion larvae is also evidenced in all four species. At pre-flexion stages, all species except bullet tuna larvae showed significant negative relationships between δ15N and larval standard length. At post-flexion stages, a significant linear relationship with larval size was only observed in albacore and bullet tuna larvae indicating a possible trophic shift towards early piscivory. With respect to δ13C values with larval size, all four species showed significant linear decreases. It may be explained by the metabolism of growth of somatic mass subject to modification of the relative carbon isotopic sources. In conclusion, the species' signatures of δ15N and δ13C indicate differentiated early life trophic niches. In addition, it is worth remarking the potential use of transgenerational isotopic transmission in future research applications.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.