Abstract

The impact of fertilization regimes on sequential denitrifying communities was investigated in a rice paddy field with 17 years continuous fertilization, located in Taoyuan Agro-ecosystem Research Station (110°72″ E, 28°52″ N), China. The diversity, community composition, and size of denitrifying genes of narG, qnorB, and nosZ were determined using molecular tools including terminal restriction fragment length polymorphism, quantitative polymerase chain reaction (qPCR), cloning, and sequencing analysis. Soil samples were collected from the plots with no fertilizer (NF), urea (UR), balanced mineral fertilizers (BM), and BM combined with rice straw (BMR). UR and BM caused marked increase in the community size of the denitrifying genes; however, BMR resulted in the highest abundance. The community size of narG was the most affected by the fertilization regimes, while qnorB was the least. Fertilization also induced some shifts in the composition of denitrifying genes, but the responses of different genes varied. However, fertilization regimes caused no significant changes to the diversity of the denitrifying genes. Potential denitrification activity (PDA) was significantly correlated with the abundance of narG and nosZ rather than qnorB, but there were no such correlations between PDA and the composition and diversity of denitrifying communities. Conclusively, long-term fertilization significantly affected denitrifying community size and composition, but not diversity. Among the sequential denitrifying genes, narG was the most, while qnorB was the least sensitive communities to fertilization regimes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.