Abstract

Over the last decade, deep neural networks (DNNs) are regarded as black-box methods, and their decisions are criticized for the lack of explainability. Existing attempts based on local explanations offer each input a visual saliency map, where the supporting features that contribute to the decision are emphasized with high relevance scores. In this paper, we improve the saliency map based on differentiated explanations, of which the saliency map not only distinguishes the supporting features from backgrounds but also shows the different degrees of importance of the various parts within the supporting features. To do this, we propose to learn a differentiated relevance estimator called DRE, where a carefully-designed distribution controller is introduced to guide the relevance scores towards right-skewed distributions. DRE can be directly optimized under pure classification losses, enabling higher faithfulness of explanations and avoiding non-trivial hyper-parameter tuning. The experimental results on three real-world datasets demonstrate that our differentiated explanations significantly improve the faithfulness with high explainability. Our code and trained models are available at https://github.com/fuweijie/DRE.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.