Abstract

In order to comprehensively evaluate the environmental impact of multi-media mercury pollution under differentiated emission control strategies in China, a literature review and case studies were carried out. Increased human exposure to methylmercury was assessed through the dietary intake of residents in areas surrounding a typical coal-fired power plant and a zinc (Zn) smelter, located either on acid soil with paddy growth in southern China, or on alkaline soil with wheat growth in northern China. Combined with knowledge on speciated mercury in flue gas and the fate of mercury in the wastewater or solid waste of the typical emitters applying different air pollution control devices, a simplified model was developed by estimating the incremental daily intake of methylmercury from both local and global pollution. Results indicated that air pollution control for coal-fired power plants and Zn smelters can greatly reduce health risks from mercury pollution, mainly through a reduction in global methylmercury exposure, but could unfortunately induce local methylmercury exposure by transferring more mercury from flue gas to wastewater or solid waste, then contaminating surrounding soil, and thus increasing dietary intake via crops. Therefore, tightening air emission control is conducive to reducing the comprehensive health risk, while the environmental equity between local and global pollution control should be fully considered. Rice in the south tends to have higher bioconcentration factors than wheat in the north, implying the great importance of strengthening local pollution control in the south, especially for Zn smelters with higher contribution to local pollution.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call