Abstract

Noninvasive differentiating thyroid follicular adenoma from carcinoma preoperatively is of great clinical value to decrease the risks resulted from excessive surgery for patients with follicular neoplasm. The purpose of this study is to investigate the accuracy of ultrasound radiomics features integrating with ultrasound features in the differentiation between thyroid follicular carcinoma and adenoma. A total of 129 patients diagnosed as thyroid follicular neoplasm with pathologically confirmed follicular adenoma and carcinoma were enrolled and analyzed retrospectively. Radiomics features were extracted from preoperative ultrasound images with manually contoured targets. Ultrasound features and clinical parameters were also obtained from electronic medical records. Radiomics signature, combined model integrating radiomics features, ultrasound features, and clinical parameters were constructed and validated to differentiate the follicular carcinoma from adenoma. A total of 23 optimal features were selected from 449 extracted radiomics features. Clinical and ultrasound parameters of sex (p = 0.003), interior structure (p = 0.035), edge (p = 0.02), platelets (p = 0.007), and creatinine (p = 0.001) were associated with the differentiation between benign and malignant follicular neoplasm. The values of area under curves (AUCs) of the radiomics signature, clinical model, and combined model were 0.772 (95% CI: 0.707-0.838), 0.792 (95% CI: 0.715-0.869), and 0.861 (95% CI: 0.775-0.909), respectively. A final corrected AUC of 0.844 was achieved for the combined model after internal validation. Radiomics features from ultrasound images combined with ultrasound features and clinical factors are feasible to differentiate thyroid follicular carcinoma from adenoma noninvasive before operation to decrease the unnecessary of diagnostic thyroidectomy for patients with benign follicular adenoma.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.