Abstract

The relative contributions of transmembrane tumor necrosis factor (memTNF) and soluble tumor necrosis factor (solTNF) in innate and adaptive immunity are poorly defined. We examined the capacities of wild-type (WT) mice, TNF-/- mice, and memTNF mice, which express only transmembrane TNF, to control primary and secondary Listeria monocytogenes infections. Soluble TNF was not required for induction or maintenance of protective immunity against a low-dose (200-CFU) Listeria infection. In contrast to TNF-/- mice, both WT and memTNF mice cleared the bacilli within 10 days and were fully protected against rechallenge with a lethal infective dose. Furthermore, T cells transferred from immune mice, but not from naïve, WT, and memTNF mice, protected TNF-/- recipients against an otherwise lethal infection. By contrast, infection with a higher dose of Listeria (2,000 CFU) clearly demonstrated that solTNF is required to coordinate an optimal protective inflammatory response. memTNF mice were more susceptible to a high-dose infection, and they exhibited delayed bacterial clearance, increased inflammation, and necrosis in the liver that resulted in 55% mortality. The dysregulated inflammation was accompanied by prolonged elevated expression of mRNAs for several chemokines as well as the macrophage effector molecules inducible nitric oxide synthase and LRG-47 in the livers of memTNF mice but not in the livers of WT mice. These data demonstrated that memTNF is sufficient for establishing protective immunity against a primary low-dose Listeria infection but that solTNF is required for optimal control of cellular inflammation and resistance to a primary high-dose infection. By contrast, memTNF alone is sufficient for resolution of a secondary, high-dose infection and for the transfer of protective immunity with memory T cells.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.