Abstract
In the present paper those formally hyperbolic differential equations are characterized for which solutions can be represented by means of differential operators acting on holomorphic functions. This is done by a necessary and sufficient condition on the coefficients of the differential equation. These operators are determined simultaneously. By it a general procedure is presented to construct differential equations and corresponding differential operators which map holomorphic functions onto solutions of the differential equations. We also discuss the question under which circumstances all the solutions of a differential equation can be represented by differential operators. For the equations characterized previously we determine the Riemann function. Some special classes of differential equations are investigated in detail. Furthermore the possibility of a representation of pseudoanalytic functions and the corresponding Vekua resolvents by differential operators is discussed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.