Abstract

In this paper, we study the problem of publishing vertically partitioned data under differential privacy, where different attributes of the same set of individuals are held by multiple parties. In this setting, with the assistance of a semi-trusted curator, the involved parties aim to collectively generate an integrated dataset while satisfying differential privacy for each local dataset. Based on the latent tree model (LTM), we present a differentially private latent tree (DPLT) approach, which is, to the best of our knowledge, the first approach to solving this challenging problem. In DPLT, the parties and the curator collaboratively identify the latent tree that best approximates the joint distribution of the integrated dataset, from which a synthetic dataset can be generated. The fundamental advantage of adopting LTM is that we can use the connections between a small number of latent attributes derived from each local dataset to capture the cross-dataset dependencies of the observed attributes in all local datasets such that the joint distribution of the integrated dataset can be learned with little injected noise and low computation and communication costs. DPLT is backed up by a series of novel techniques, including two-phase latent attribute generation (TLAG), tree index based correlation quantification (TICQ) and distributed Laplace perturbation protocol (DLPP). Extensive experiments on real datasets demonstrate that DPLT offers desirable data utility with low computation and communication costs.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call