Abstract

Recently, several methods such as private ANM, EM-PC and Priv-PC have been proposed to perform differentially private causal discovery in various scenarios including bivariate, multivariate Gaussian and categorical cases. However, there is little effort on how to conduct private nonlinear causal discovery from numerical data. This work tries to challenge this problem. To this end, we propose a method to infer nonlinear causal relations from observed numerical data by using regression-based conditional independence test (RCIT) that consists of kernel ridge regression (KRR) and Hilbert-Schmidt independence criterion (HSIC) with permutation approximation. Sensitivity analysis for RCIT is given and a private constraint-based causal discovery framework with differential privacy guarantee is developed. Extensive simulations and real-world experiments for both conditional independence test and causal discovery are conducted, which show that our method is effective in handling nonlinear numerical cases and easy to implement. The source code of our method and data are available at https://github.com/Causality-Inference/PCD.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.