Abstract

Internet of Things and the related computing paradigms, such as cloud computing and fog computing, provide solutions for various applications and services with massive and high-dimensional data, while producing threats to the personal privacy. Differential privacy is a promising privacy-preserving definition for various applications and is enforced by injecting random noise into each query result such that the adversary with arbitrary background knowledge cannot infer sensitive input from the noisy results. Nevertheless, existing differentially private mechanisms have poor utility and high-computation complexity on high-dimensional data because the necessary noise in queries is proportional to the size of the data domain, which is exponential to the dimensionality. To address these issues, we develop a compressed sensing mechanism (CSM) that enforces differential privacy on the basis of the compressed sensing (CS) framework while providing accurate results to linear queries. We derive the utility guarantee of CSM theoretically. An extensive experimental evaluation on real-world data sets over multiple fields demonstrates that our proposed mechanism consistently outperforms several state-of-the-art mechanisms under differential privacy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.