Abstract

Bone marrow microenvironment is indispensable for the maintenance of bone homeostasis. We speculated that alterations of some factors in the microenvironment of osteoporotic subjects might influence the homeostasis. This study aimed to investigate the changes in the expression of protein factors in the bone marrow environment of osteoporosis. We performed a proteomics analysis in the vertebral body-derived bone marrow supernatant fluid from 8 Chinese patients undergoing posterior lumbar interbody fusion (4 osteoporotic vs. 4 non-osteoporotic) and used micro-CT to analyze the microstructural features of spinous processes from these patients. We further performed western blotting to validate the differential expressions of some proteins. There was deteriorated bone microstructure in osteoporotic patients. Based on proteomics analysis, 172 upregulated and 47 downregulated proteins were identified. These proteins had multiple biological functions associated with osteoblast differentiation, lipid metabolism, and cell migration, and formed a complex protein-protein interaction network. We identified five major regulatory mechanisms, splicing, translation, protein degradation, cytoskeletal organization, and lipid metabolism, involved in the pathogenesis of osteoporosis. There are various protein factors, such as DDX5, PSMC2, CSNK1A1, PLIN1, ILK, and TPM4, differentially expressed in the bone marrow microenvironment of osteoporotic patients, providing new ideas for finding therapeutic targets for osteoporosis.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call