Abstract

A major force driving in the innovation of mutualistic symbioses is the number of adaptations that both organisms must acquire to provide overall increased fitness for a successful partnership. Many of these symbioses are relatively dependent on the ability of the symbiont to locate a host (specificity), as well as provide some novel capability upon colonization. The mutualism between sepiolid squids and members of the Vibrionaceae is a unique system in which development of the symbiotic partnership has been studied in detail, but much remains unknown about the genetics of symbiont colonization and persistence within the host. Using a method that captures exclusively expressed transcripts in either free-living or host-associated strains of Vibrio fischeri, we identified and verified expression of genes differentially expressed in both states from two symbiotic strains of V. fischeri. These genes provide a glimpse into the microhabitat V. fischeri encounters in both free-living seawater and symbiotic host light organ-associated habitats, providing insight into the elements necessary for local adaptation and the evolution of host specificity in this unique mutualism.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call