Abstract

Previously, a degenerate 36 bp human consensus sequence was identified as a determinant of autonomous replication in eukaryotic cells. Random mutagenesis analyses further identified an internal 20 bp of the 36 bp consensus sequence as sufficient for acting as a core origin element. Here, we have located six versions of the 20 bp consensus sequence (20mer) on human chromosome 19q13 over a region spanning approximately 211 kb and tested them for ectopic and in situ replication activity by transient episomal replication assays and nascent DNA strand abundance analyses, respectively. The six versions of the 20mer alone were capable of supporting autonomous replication of their respective plasmids, unlike random genomic sequence of the same length. Furthermore, comparative analyses of the endogenous replication activity of these 20mers at their respective chromosomal sites, in five tumor/transformed and two normal cell lines, done by in situ chromosomal DNA replication assays, involving preparation of nascent DNA by the lambda exonuclease method and quantification by real-time PCR, showed that these sites coincided with chromosomal origins of DNA replication in all cell lines. Moreover, a 2- to 3-fold higher origin activity in the tumor/transformed cells by comparison to the normal cells was observed, suggesting a higher activation of these origins in tumor/transformed cell lines.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.