Abstract
The differential-linear cryptanalysis is an important cryptanalytic tool in cryptography, and has been extensively researched since its discovery by Langford and Hellman in 1994. There are nevertheless very few methods to study the middle part where the differential and linear trail connect. In this paper, we study differential-linear cryptanalysis from an algebraic perspective. We first introduce a technique called Differential Algebraic Transitional Form (DATF) for differential-linear cryptanalysis, then develop a new theory of estimation of the differential-linear bias and techniques for key recovery in differential-linear cryptanalysis.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.