Abstract

There is developed a differential-algebraic approach to studying the representations of commuting differentiations in functional differential rings under nonlinear differential constraints. An example of the differential ideal with the only one conserved quantity is analyzed in detail, the corresponding Lax type representations of differentiations are constructed for an infinite hierarchy of nonlinear dynamical systems of the Burgers and Korteweg–de Vries type. A related infinite bi-Hamiltonian hierarchy of Lax type dynamical systems is constructed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.