Abstract

The neurophysiological basis of width discrimination has been extensively studied in rodents and has shown that active and passive tactile discrimination engage fundamentally different neural networks. Although previous studies have analyzed active and passive tactile processing in humans, little is known about the neurophysiological basis of width discrimination in humans. Here we present a width discrimination task for humans that reproduces the main features of the width discrimination task previously developed for rodents. The task required subjects to actively or passively sample two movable bars forming a “narrow” or “wide” aperture. Subjects were then required to press one of two buttons to indicate if the bar width was “narrow” or “wide”. Behavioral testing showed that subjects were capable of discriminating between wide or narrow apertures up to distances of 0.1 cm. Electroencephalography (EEG) recordings further suggested distinct topographic maps for active and passive versions of the task during the period associated with the aperture discrimination. These results indicate that the Human Differential Width Discrimination Task is a valuable tool to describe the behavioral characteristics and neurophysiological basis of tactile processing.•Active and passive width discrimination has been extensively studied in rodents but not in humans.•Human subjects were capable of discriminating aperture widths of 0.1 cm.•Electroencephalography recordings showed that active and passive versions of the task were associated with different topographic maps.

Highlights

  • Electroencephalography (EEG) recordings further suggested distinct topographic maps for active and passive versions of the task during the period associated with the aperture discrimination. These results indicate that the Human Differential Width Discrimination Task is a valuable tool to describe the behavioral characteristics and neurophysiological basis of tactile processing

  • The tactile discrimination experimental apparatus consists of a custom developed electromechanical device controlled by a custom designed computer software that allows for tactile discrimination control in a consistent and repeatable manner

  • The box structure was constructed with an aluminum frame, acrylic bed and plastic and soundproof walls to minimize the aural noise generated by the motors

Read more

Summary

Method Article

Differential width discrimination task for active and passive tactile discrimination in humans. Electroencephalography (EEG) recordings further suggested distinct topographic maps for active and passive versions of the task during the period associated with the aperture discrimination. These results indicate that the Human Differential Width Discrimination Task is a valuable tool to describe the behavioral characteristics and neurophysiological basis of tactile processing. Subject Area: More specific subject area: Method name: Name and reference of original method: Resource availability: Neuroscience Somatosensory processing Differential width discrimination task for humans (Note: the original task was described for rodents) Krupa, D.J., Matell, M.S., Brisben, A.J., Oliveira, L.M. and Nicolelis, M.A., 2001.

Method details
Method validation
Declaration of Competing Interest
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.