Abstract

Endothelial-dependent regulation of vascular tone occurs in part via protein kinase G1α-mediated changes in smooth muscle myofilament sensitivity to Ca(2+). Tissue-specific differences in PKG-dependent relaxation have been attributed to altered expression of myofilament-associated proteins that are substrates for PKG binding. These include the alternative splicing of the myosin targeting subunit (MYPT1) of myosin light chain phosphatase to yield leucine zipper positive (LZ(+)) and negative (LZ(-)) isovariants, with the former being required for PKG-mediated relaxation, and/or altered expressions of telokin, vasodilator-stimulated phosphoprotein (VASP) or heat shock protein Hsp20. During human pregnancy the uterine and placental circulations remain distinct entities and, as such, their mechanisms of vascular tone regulation may differ. Indeed, the sensitivity of myometrial arteries to endothelial-dependent agonists has been suggested to be greater than that of placental arteries. We tested the hypothesis that this was related to tissue-specific changes in PKG-mediated myofilament Ca(2+)-desensitization and/or the expressions of PKG-interacting myofilament-associated proteins. Permeabilized human placental and myometrial arteries were constricted with maximal activating Ca(2+) (pCa 4.5), or sub-maximal Ca(2+) (pCa 6.7) and the thrombane mimetic U46619, and exposed to 8-Br-cGMP. In each case, relaxation was significantly greater in myometrial arteries (e.g. relaxation in pCa 4.5 to 8-Br-cGMP was 49 ± 9.7%, n = 7) than placental arteries (relaxation of 23 ± 6.6%, n = 6, P < 0.05). MYPT1 protein levels, or MYPT1 LZ(+)/LZ(-) mRNA ratios, were similar for both artery types. Of other proteins examined, only Hsp20 expression was significantly elevated in myometrial arteries than placental arteries. These results demonstrate that the reduced human placental artery relaxation to PKG stimulation lies partly at the level of myofilament (de)activation and may be related to a lower expression of Hsp20 than in myometrial arteries.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.