Abstract

The present study was designed to examine the steady-state density and the turnover rates of D1 dopamine (DA) receptors in the striatum, nucleus accumbens, substantia nigra, and retina of the rat. The turnover rates were measured by monitoring the repopulation kinetics of D1 DA receptors labelled with [3H]SCH 23390 after the irreversible inactivation induced by a single dose of N-ethoxycarbonyl-2-ethoxy-1,2-dihydroquinoline (10 mg/kg s.c.). The repopulation of D1 DA receptors could be described adequately in all the neural tissues investigated by a theoretical model that assumes a constant rate of receptor production (i.e., zero order) and a rate of degradation that is dependent on the receptor density at any time (i.e., first order). The quantitative analysis of the experimental data using this theoretical model revealed significant regional differences in the rates of receptor production and degradation. Thus, the receptor production rates determined in the nucleus accumbens and striatum (8.03 and 9.96 fmol/mg of protein/h, respectively) were four- to sixfold larger than those measured in the substantia nigra (1.80 fmol/mg of protein/h) and retina (1.50 fmol/mg of protein/h). On the other hand, the receptor degradation rates in the striatum, nucleus accumbens, and retina (0.0093 h-1, 0.0110 h-1, and 0.0123 h-1, respectively) were 2.6-3.5-fold larger than the receptor degradation rate in the substantia nigra (0.0035 h-1).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.