Abstract
A novel numerical method based on the differential transformation is proposed for solving nonlinear optimal control problems in this paper. The differential transformation is a linear operator that transforms a function from the original time and/or space domain into another domain in order to simplify the differential calculations. The optimality conditions for the optimal control problems can be represented by algebraic and differential equations. Using the differential transformation, these algebraic and differential equations with their boundary conditions are first converted into a system of nonlinear algebraic equations. Then the numerical optimal solutions are obtained in the form of finite-term Taylor series by solving the system of nonlinear algebraic equations. The differential transformation algorithm is similar to the spectral element methods in that the computational region splits into several subregions but it uses polynomials of high degrees by keeping a small number of subregions. The differential transformation algorithm could solve the finite- (or infinite-) time horizon optimal control problems formulated as either the algebraic and ordinary differential equations using Pontryagin’s minimum principle or the Hamilton–Jacobi–Bellman partial differential equation using dynamic programming in one unified framework. In addition, the differential transformation algorithm can efficiently solve optimal control problems with the piecewise continuous dynamics and/or nonsmooth control. The performance is demonstrated through illustrative examples.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Dynamic Systems, Measurement, and Control
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.