Abstract

Traumatic spinal cord injury causes rapid neuronal and vascular injury, and predictive biomarkers are needed to facilitate acute patient management. This study examined the progression of magnetic resonance imaging (MRI) biomarkers after spinal cord injury and their ability to predict long-term neurological outcomes in a rodent model, with an emphasis on diffusion-weighted imaging (DWI) markers of axonal injury and perfusion-weighted imaging of spinal cord blood flow (SCBF). Adult Sprague-Dawley rats received a cervical contusion injury of varying severity (injured = 30, sham = 9). MRI at 4 h, 48-h, and 12-weeks post-injury included T1, T2, perfusion, and DWI. Locomotor outcome was assessed up to 12 weeks post-injury. At 4 h, the deficit in SCBF was larger than the DWI lesion, and although SCBF partially recovered by 48 h, the DWI lesion expanded. At 4 h, the volume of the SCBF deficit (R2 = 0.56, padj < 0.01) was significantly correlated with 12-week locomotor outcome, whereas DWI (R2 = 0.30, padj < 0.01) was less predictive of outcome. At 48 h, SCBF (R2 = 0.41, padj < 0.01) became less associated with outcome, and DWI (R2 = 0.38, padj < 0.01) lesion volume became more closely related to outcome. Spinal cord perfusion has unique spatiotemporal dynamics compared with diffusion measures of axonal damage and highlights the importance of acute perfusion abnormalities. Perfusion and diffusion offer complementary and clinically relevant insight into physiological and structural abnormalities following spinal cord injury beyond those afforded by T1 or T2 contrasts.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call