Abstract

Eis (Enhanced Intracellular Survival) is an important aminoglycoside N-acetyltransferase enzyme contributing to kanamycin resistance in Mtb clinical isolates. Eis proteins from M. tuberculosis (RvEis) and M. smegmatis (MsEis) have 58% identical and 69% similar amino acid sequences and acetylate aminoglycosides at multiple amines. Both the Eis proteins are hexameric and composed of two symmetric trimers. RvEis has remarkable structural stability and heat-stable aminoglycoside acetyltransferase activity. Although the structure and biochemical properties of MsEis have been studied earlier, the detailed characterization of its acetyltransferase activity and structural stability is lacking. In this study, we have performed comparative analysis of structural stability and aminoglycoside acetyltransferase activity of RvEis and MsEis proteins. Unlike RvEis, MsEis undergoes a three-state unfolding induced by heat or chemical denaturants and involves self-association of partially unfolded oligomers to form high molecular weight soluble aggregates. MsEis is highly susceptible to chemical denaturants and unfolds completely at lower concentrations of GdmCl and urea when compared to RvEis. In contrast to RvEis, the oligomeric forms of MsEis are SDS sensitive. However, SDS treatment resulted in increased helix formation in MsEis than RvEis. MsEis shows lesser thermostable activity with a decreased efficiency of kanamycin acetylation in comparison to RvEis. Furthermore, overexpression of MsEis does not provide thermal resistance to M. smegmatis unlike RvEis. Collectively, this study reveals that homologous proteins from pathogenic and nonpathogenic mycobacteria follow different modes of unfolding and demonstrate differential structural stability and activity despite highly similar sequences and oligomeric organization.

Highlights

  • The acetylation of aminoglycosides by aminoglycoside acetyltransferases is one of the important mechanisms contributing to drug resistance in tuberculosis [1]

  • Far-UV Circular dichroism (CD) spectra of M. smegmatis (MsEis) protein indicates the presence of α-helix and β-sheets in the secondary structure as observed at 25 ̊C (Fig 1A)

  • MsEis protein began to lose its structure following incubation at 35 ̊C, an intermediate state was formed between 50 ̊C and 75 ̊C and no change in the ellipticity was observed in this temperature range (Fig 1B)

Read more

Summary

Introduction

The acetylation of aminoglycosides by aminoglycoside acetyltransferases is one of the important mechanisms contributing to drug resistance in tuberculosis [1]. Differential stability and unfolding behavior of MsEis and RvEis proteins and analysis, decision to publish, or preparation of the manuscript

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call