Abstract

The ability of phosphatidylinositol-specific phospholipase C (PIPLC) to solubilize acetylcholinesterase (AChE) in the electromotor system of adult Torpedo ocellata and in the developing electric organ was examined. PIPLC solubilizes significant amounts of the membrane-bound G2 form of AChE throughout embryonic development of the electric organ, as it does in the adult electric organ, the AChE of which we have shown to contain covalently bound inositol in its membrane-anchoring domain. In the electromotor system of the mature fish, PIPLC solubilizes almost quantitatively the AChE dimer in the electromotor axon as in the electric organ itself, but the corresponding fraction in the electric lobe is almost totally resistant to the phospholipase. This finding implies that the covalently bound phosphatidylinositol is added concomitantly with axonal transport. A substantial part of the G2 form in back muscle is sensitive to PIPLC, whereas the G4 tetramer of Torpedo brain is completely resistant.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call