Abstract

Monocytes and macrophages that originate from common myeloid progenitors perform various crucial roles in the innate immune system. Stimulation with LPS combined with TLR4 drives the production of pro-inflammatory cytokines through MAPKs and NF-κB pathway in different cells. However, the difference in LPS susceptibility between monocytes and macrophages is poorly understood. In this study, we found that pro-inflammatory cytokines—IL-1β, IL-6 and TNFα showed greater induction in phorbol-12-myristate-13-acetate (PMA)-differentiated THP-1 cells than in THP-1 cells. To determine the difference in cytokine expression, the surface proteins such as TLR4-related proteins and intracellular adaptor proteins were more preserved in PMA-differentiated THP-1 cells than in THP-1 cells. MyD88 is a key molecule responsible for the difference in LPS susceptibility. Moreover, MAPKs and NF-κB pathway-related molecules showed higher levels of phosphorylation in PMA-differentiated THP-1 cells than in THP-1 cells. Upon MyD88 depletion, there was no difference in the phosphorylation of MAPK pathway-related molecules. Therefore, these results demonstrate that the difference in LPS susceptibility between THP-1 cells and PMA-differentiated THP-1 cells occur as a result of gap between the activated MAPKs and NF-κB pathways via changes in the expression of LPS-related receptors and MyD88.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call