Abstract

Per and polifluorinated substances (PFAS) are ubiquitous and persistent contaminants. Studies have indicated that fetuses and infants can be exposed to these chemicals in utero and through breastfeeding. Despite this, limited data about their effects on brain development are available. Here, we compared the effects of perfluoroctane sulfonate (PFOS) and perfluorooctanoic acid (PFOA) exposure in rat primary neurons and neural stem cells (NSC). Treatment with 1–250 μM of either of these compounds caused no effects on cell viability or proliferation in primary neurons, while PFOS exposure increased the NSC proliferation already at the lowest concentration tested (1–100 μM). Further analysis showed that both PFOS and PFOA caused morphological alterations of NSC-derived neurons. The neurons derived from NSC treated with either of the PFAS demonstrated a decrease in cell body area. Exposure to 1 and 10 μM PFOA also affected the neurite network and caused an increase in the number of processes and branches per cell. None of the PFAS caused morphological alterations in primary neurons. These data suggest that NSC, mimicking the immature brain, is clearly more susceptible to PFOS and PFOA exposure than the primary neurons. The PFAS-induced alterations in NSC may be related to neurobehavioral alterations observed in rodents developmentally exposed to these compounds, and show the importance to consider the effects of these compounds on human brain development and disease.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.