Abstract

Campylobacter jejuni accounts for a significant number of foodborne illnesses around the world. C. jejuni is microaerophilic and typically does not survive efficiently in oxygen-rich conditions. We recently reported that hyper-aerotolerant (HAT) C. jejuni are highly prevalent in retail poultry meat. To assess the capabilities of HAT C. jejuni in foodborne transmission and infection, in this study, we investigated the prevalence of virulence genes in HAT C. jejuni and the survival in poultry meat in atmosphere at a refrigeration temperature. When we examined the prevalence of eight virulence genes in 70 C. jejuni strains from raw poultry meat, interestingly, the frequencies of detecting virulence genes were significantly higher in HAT C. jejuni strains than aerosenstive C. jejuni strains. This suggests that HAT C. jejuni would potentially be more pathogenic than aerosensitive C. jejuni. Under aerobic conditions, aerosensitive C. jejuni survived at 4°C in raw poultry meat for 3 days, whereas HAT C. jejuni survived in poultry meat for a substantially extended time; there was a five-log CFU reduction over 2 weeks. In addition, we measured the effect of other gas conditions, including N2 and CO2, on the viability of HAT C. jejuni in comparison with aerosensitive and aerotolerant strains. N2 marginally affected the viability of C. jejuni. However, CO2 significantly reduced the viability of C. jejuni both in culture media and poultry meat. Based on the results, modified atmosphere packaging using CO2 may help us to control poultry contamination with HAT C. jejuni.

Highlights

  • Campylobacter is a leading bacterial cause of human gastroenteritis, annually accounting for approximately 166 million diarrheal cases around the world, in developed countries (Kirk et al, 2015)

  • To evaluate the impact of hyper-aerotolerance on the survival of C. jejuni in poultry meat in this study, raw poultry meat was spiked with two strains of C. jejuni from each aerotolerance group and incubated at 4◦C under aerobic conditions

  • The aerosensitive C. jejuni strains lost their viability on poultry meat within 3 days, and the aerotolerant C. jejuni strains survived for 7 days (Figure 1)

Read more

Summary

Introduction

Campylobacter is a leading bacterial cause of human gastroenteritis, annually accounting for approximately 166 million diarrheal cases around the world, in developed countries (Kirk et al, 2015). Human infection with C. jejuni is facilitated by the function of various virulence factors involved in toxin production (e.g., cdtABC), cell adhesion (e.g., cadF, peb1A, and pldA) and invasion (e.g., ciaB), and colonization of gastrointestinal tracts (Bolton, 2015). The gastrointestinal tracts of poultry are colonized by Campylobacter jejuni, the major human pathogenic species of Campylobacter, at the level of 106∼108 CFU/g feces or higher (Hermans et al, 2011). It has been estimated that a two-log reduction in the number of Campylobacter on chicken carcasses may lead to approximately a 30-fold reduction in the number of human campylobacteriosis cases (Rosenquist et al, 2003). To control Campylobacter contamination of poultry, various intervention strategies have been examined at the pre- and post-harvest levels, such as bacteriocin and bacteriophages (Hermans et al, 2011; Umaraw et al, 2017)

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.