Abstract

Monoamine oxidase type A and type B are major neurotransmitter-degrading enzymes in the CNS. The type A is present on mitochondrial outer membranes in the whole extent of noradrenergic and dopaminergic neurons, including their axon terminals. The type B is present in serotonergic neurons, but its subcellular localization has not been elucidated. In the present study, we used both a double-labeling immunofluorescence method and electron microscopic immunohistochemistry to examine the subcellular localization of monoamine oxidase type B in serotonergic neurons projecting from the dorsal raphe nucleus to the suprachiasmatic nucleus in the rat brain. In the dorsal raphe nucleus, serotonin-positive neuronal cell bodies were clustered, and virtually all of these cell bodies were also positive for monoamine oxidase type B. By contrast, serotonin-negative neuronal cell bodies were mostly free of this enzyme. Within the neuronal cell bodies and dendrites that were positive for monoamine oxidase type B, most mitochondria contained this enzyme on their outer membranes, but a substantial proportion of mitochondria lacked this enzyme. In the suprachiasmatic nucleus, serotonin-positive varicosities were concentrated, but none of these varicosities exhibited monoamine oxidase type B. In this nucleus, mitochondria were found in almost all serotonin-positive axon terminals, but monoamine oxidase type B was not observed in any axon terminal that contained mitochondria. Our results show that there are two kinds of mitochondria in serotonergic neuronal cell bodies and dendrites: one containing monoamine oxidase type B on their outer membranes, and the other lacking this enzyme. In addition, mitochondria in serotonergic axon terminals do not possess monoamine oxidase type B. It is suggested in serotonergic neurons that only mitochondria lacking monoamine oxidase type B are transported by axonal flow up to axon terminals. It is also probable that mitochondria containing monoamine oxidase type B are transported along the axons, but that this enzyme undergoes a change, for example, conformational change, decomposition or removal from the membranes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call