Abstract

The human Achilles tendon (AT) has often been considered to act as a single elastic structure in series with the muscles of the triceps surae. As such it has been commonly modelled as a Hookean spring of uniform stiffness. However, the free AT and the proximal AT have distinctly different structures that lend themselves to different elastic properties. This study aimed to use three-dimensional freehand ultrasound imaging to determine whether the proximal AT and the free AT exhibit different elastic behaviour during sub-maximal, fixed-end contractions of the triceps surae. Six male and five female participants (mean ± s.d. age=27 ± 5 years) performed fixed position contractions of the plantar-flexors on an isokinetic dynamometer at 50% of their maximum voluntary contraction in this position. Freehand three-dimensional ultrasound imaging was used to reconstruct the free-tendon and proximal AT at rest and during contraction. The free-tendon exhibited significantly (P=0.03) greater longitudinal strain (5.2 ± 1.7%) than the proximal AT (2.6 ± 2.0%). The lesser longitudinal strain of the proximal AT was linked to the fact that it exhibited considerable transverse (orthogonal to the longitudinal direction) strains (5.0 ± 4%). The transverse strain of the proximal AT is likely due to the triceps surae muscles bulging upon contraction, and thus the level of bulging may influence the elastic behaviour of the proximal AT. This might have implications for the understanding of triceps surae muscle-tendon interaction during locomotion, tendon injury mechanics and previous measurements of AT elastic properties.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call