Abstract

The pleiotropic effects of the viable yellow mutation (Avy), an allele of the mouse agouti coat-color locus, include increased susceptibility to spontaneous and chemically induced tumors that affect a wide variety of tissues. As a first step toward understanding the molecular basis of this phenomenon, we established permanent fibroblast-like cell lines from newborn Avy/a and control congenic a/a mice and compared their growth characteristics in vitro. From the VY/WffC3Hf/Nctr and YS/WffCH3f/Nctr-Avy inbre strains, each of which carries the Avy allele on a congenic background, 38 clonal Avy/a and 16 clonal a/a lines were established. Regardless of inbred strain, all Avy/a cell lines exhibited a significant degree of spontaneous transformation, as assessed by focus formation in monolayer culture, whereas none of the a/a cell lines formed foci in prolonged cultures. To test whether changes in dosage of the Avy- or a-bearing chromosomes were related to these events, we analyzed each cell line with a closely linked molecular probe from the Emv-15 locus, which in the VY strain detects a restriction fragment length variant (RFLV) informative for the Avy- and a-bearing chromosomes. Most of the transformed foci maintained heterozygosity for RFLVs detected by the probe, but two of the transformants lost the a-associated RFLV, and at least one of the transformants exhibited amplification of the Avy-associated RFLV. When the transformants were analyzed with 5' sequences derived from the recently cloned agouti gene, three of eight transformants lost the a-associated RFLV, and two of the transformants showed amplification of the Avy-associated RFLV. Reverse transcriptase-polymerase chain reaction assays indicated that agouti RNA was detected in Avy/a, not a/a cell lines. Surprisingly, some of the Avy/a transformants lacked agouti RNA. These results suggest that deregulated expression of the Avy allele is required for the initiation but not for the maintenance of transformation of the Avy/a cell cultures. These cell lines may provide an in vitro culture system for studying the effect of the agouti gene on tumorigenicity as well as to potentially study other pleiotropic phenotypes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.