Abstract

As part of our ongoing effort to relate stimulus to response in the olfactory system, we tested the hypothesis that the unique chemical structures and odors of various cyclic odorants would be associated with unique spatial response patterns in the glomerular layer of the rat olfactory bulb. To this end, rats were exposed to sets of odorants, including monocyclic hydrocarbons, bicyclic compounds, and various heterocyclic structures containing oxygen or nitrogen in the ring. Relative activity across the entire layer was assessed by mapping uptake of 2-deoxyglucose into anatomically standardized data matrices. Whereas monocyclic hydrocarbons evoked patterns similar to those evoked by open-chained hydrocarbon odorants, a set of bicyclic compounds with structures and odors similar to camphor evoked uptake in paired ventral domains not previously associated with any other odorant chemical structures. Despite their unique odors as judged by humans, heterocyclic odorants either evoked uptake in previously characterized areas corresponding to their functional groups or stimulated weak or patchy patterns involving isolated glomeruli. Although the patchiness of the patterns may be partially related to the rigidity of the compounds, which would be expected to restrict their interactions to only a few receptors, the weakness of the patterns suggests the possibility of species-specific odorant representations. We conclude that, whereas some of the novel cyclic structures indeed were represented by unique patterns in the rat bulb, other unique structures were poorly represented, even when they evoked intense and unique odors in humans.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.