Abstract

In this paper, joint differential space-time modulation (DSTM) and eigen-beamforming for correlated multiple-input multiple-output (MIMO) fading channels. While DSTM does not require knowledge of each channel realization, the channel's spatial correlation can be easily estimated without training at the receiver and exploited by the transmitter to enhance the error probability performance. A transmission scheme is developed here that combines beamforming with differential multiantenna modulation based on orthogonal space-time block coding. Error probability is analyzed for both spatially correlated and independent Rayleigh fading channels. Based on the error probability analysis, power loading coefficients are derived to improve performance. The analytical and simulation results presented here corroborate that the proposed scheme can achieve considerable performance gain in correlated channels relative to DSTM without beamforming.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.