Abstract

2-(2'-Hydroxyphenyl)benzoxazole (HBO) may be used as a model base pair to study solvation, duplex environment, and tautomerization within the major and minor groves of DNA duplexes. In its ground state, HBO possesses an enol moiety which may be oriented syn or anti relative to the imino nitrogen of the benzoxazole ring. In the absence of external hydrogen-bond donors and acceptors HBO exists as the internally hydrogen-bonded syn-enol, a mimic of the rare base pair tautomer found in DNA, which may be photoinduced to tautomerize and form the keto tautomer, a mimic of the dominant base pair tautomer. Previously, we demonstrated that when incorporated into DNA such that the enol moiety is positioned in the major groove, HBO is not solvated, exists exclusively as the internally hydrogen-bonded syn-enol which is efficiently photoinduced to tautomerize, and the corresponding keto tautomer is preferentially stabilized. In stark contrast, we now show that when HBO is incorporated in DNA such that the enol moiety is positioned in the minor groove, the enol tautomer is preferentially stabilized. Molecular dynamics simulations suggest that this results from the formation of a stable hydrogen-bond between the HBO enol and the O4' atom of an adjacent nucleotide, an H-bond acceptor that is only available in the minor groove. The differential stabilization of the enol and keto tautomers in the major and minor grooves may reflect the functions for which these environments evolved, including duplex replication, stability, and recognition.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.