Abstract

Cuphea ( Cuphea viscosissima Jacq. x C. lanceolata W.T. Aiton; PSR23) is a new oilseed crop rich in medium-chain fatty acids similar to tropical palms. Agronomic studies suggest that temperature is a key determinant of cuphea seed yields. However, little is known about the growth and photosynthesis response of cuphea to temperature. The following study is the first of its kind to evaluate cuphea's growth and photosynthesis response to temperature. Cuphea was grown under day/night temperature regimes of 18/12, 24/18, and 30/24 °C and regression analysis was used to assess its responses of growth and photosynthesis and determine their optimum temperature range. Vegetative growth and leaf photosynthesis adapted well over the temperature range studied. However, reproductive growth was more sensitive showing a decline with increasing temperature. Reproductive growth rate was greatest under the lowest (18/12 °C) temperature treatment and declined by 43% at the highest growth temperatures. In contrast, vegetative growth, which was greatest under the 24/18 °C treatment, declined by just 25 and 10% at the lowest and highest temperatures, respectively. Photosynthesis acclimated to temperature by up-regulation of in vivo Rubisco activity with declining growth temperature. Maximum Rubisco activity ( V cmax) in leaves under the 18/12 °C treatment was 76% greater than that of leaves grown at 30/24 °C. Photosynthetic acclimation permitted cuphea to vegetatively grow well over a wide temperature range, but does not explain the sensitivity of reproductive growth to temperature, which will require further research to elucidate.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.