Abstract

The type-I, homodimeric photosynthetic reaction center (RC) of Heliobacteria (HbRC) is the only known RC in which bacteriochlorophyll g (BChl g) is found. It is also simpler than other RCs, having the smallest number of protein subunits and bound chromophores of any type-I RC. In the presence of oxygen, BChl g isomerizes to 81-hydroxychlorophyll aF (Chl aF). This naturally occurring process provides a way of altering the chlorophylls and studying the effect of these changes on energy and electron transfer. Transient absorbance difference spectroscopy reveals that triplet-state formation occurs in the antenna chlorophylls of HbRCs but does not provide site-specific information. Here, we report on an extended optically detected magnetic resonance (ODMR) study of the antenna triplet states in HbRCs with differing levels of conversion of BChl g to Chl aF. The data reveal pools of BChl g molecules with different triplet zero-field splitting parameters and different susceptibilities to chemical oxidation. By relating the detailed spectroscopic characteristics derived from the ODMR data to the recently solved crystallographic structure, we have tentatively identified BChl g molecules in which the probability of triplet formation is high and sites at which BChl g conversion is more likely, providing useful information about the fate of the excitation in the complex.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.