Abstract

The cytotoxicity of a recombinant interleukin 6 (IL-6)-diphtheria toxin (DT) fusion protein towards human myeloma cell lines was investigated. DAB389-IL-6 inhibited protein synthesis and methylcellulose colony formation by U266 myeloma cells. In the clonogenic assay, the fusion protein approached the level of cytotoxicity achieved by native DT. The specificity of killing by DAB389-IL-6 was demonstrated by inhibition of cytotoxicity by a molar excess of free rhIL-6. The effect of DAB389-IL-6 on colony formation by six OCI-My cell lines was assessed. Similar to U266 cells, colony growth by the OCI-My 5 and -My 2 cell lines was inhibited in a simple dose dependent manner. However, a biphasic effect was observed for the IL-6 dependent OCI-My 4 cells; DAB389-IL-6 stimulated colony formation at low (< or = 10(-11) M) concentrations, yet was inhibitory at higher doses. Three other cell lines whose growth was not altered by IL-6 were relatively unaffected by DAB389-IL-6, despite their sensitivity to native DT. Flow cytometric analysis for IL-6 receptor expression using phycoerythrin-conjugated IL-6 demonstrated specific binding sites on both DAB389-IL-6 sensitive and certain insensitive cell lines, suggesting that other factors in addition to the expression of IL-6 receptors are involved in killing by the fusion toxin. Despite evidence for a role of IL-6 in myeloid cell development, normal bone marrow was insensitive to the IL-6 fusion toxin. In cultures containing both normal bone marrow and U266 cells DAB389-IL-6 effectively inhibited the growth of U266 myeloma colonies but had little effect on normal bone marrow erythroid, granulocyte and mixed erythroid/granulocyte colony growth. From these experiments we conclude that DAB389-IL-6 is specifically cytotoxic towards a subset of IL-6-responsive human myeloma cell lines and may be useful, in some cases, in the selective elimination of tumour cells from mixed populations of normal and malignant cells.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.