Abstract
The differential sensing approach uses fingerprint patterning to distinguish uncharacterized biological samples. Inspired by natural sensory systems, an array of cross-reactive sensors generates unique response fingerprint depending on the samples. Until today, this array system has been developed using various materials, including the library of surface-charged nanoparticles and chemosensors. Many differential array systems have demonstrated accurate identification of bacterial species, viral subtypes, and cancer cells, as well as distinguishing disease states in blood or urine. This capability is particularly important for distinguishing between normal and abnormal states when specific marker molecules have not yet been identified, providing a powerful diagnostic tool. In this concept, we summarized representative outcomes of differential sensing applications for biological sample discrimination.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.