Abstract

Multiple water-in-oil-in-water (W/O/W) emulsions offer a huge potential as encapsulation systems in different food, cosmetic, and pharmaceutical applications. Because of their complex structure, however, it is difficult to characterize these systems. Typical measurement techniques to determine the size and stability of the inner water droplets encapsulated in the oil droplets show limitations and inaccuracies. Determining the total amount of water in the inner droplets is most often done by indirect methods to date. We describe an analytical method based on differential scanning calorimetry (DSC) for characterizing the total amount of encapsulated water droplets and their stability in W/O/W multiple emulsions. It uses the possibility to directly determine the latent heat of freezing of water droplets of the same size and composition as in the multiple emulsions. The amount of water in the inner droplets of a W/O/W emulsion can thus be calculated very accurately. It is shown that this method enables furthermore detecting multi-modalities in the size distribution of inner water droplets in W/O/W emulsions. Changes in droplet size distribution of the inner droplets occurring during the second emulsification step of processing or during storage can be detected. DSC thus offers a powerful tool to characterize the structure of multiple W/O/W emulsions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.