Abstract

Reaction synthesis method for titanium aluminide processing consists of an exothermic reaction among alloying elements present and primarily between titanium and aluminium particles at specific temperature range. Study of this reaction helps in understanding the process of aluminide formation. Differential scanning calorimetry (DSC) study is the suitable method to study such reactions. In the present work, five different alloy mixtures based on Ti48Al2Cr2Nb0.1B are prepared and DSC study is carried out. Onset temperature, peak temperature and completion temperature of the major exothermic reaction is analyzed at different heating rates. Further, kinetics of the reaction is studied using Johnson–Mehl–Avrami equation. Activation energy and Avrami parameter are calculated and compared with the reported works on binary alloy. It has been observed that exothermic reaction is triggered by melting of aluminium. Boron assists in increasing the enthalpy of reaction by boride formation. Primary reaction product is found to be TiAl3. Activation energy as well as Avrami parameter is found to have marginal variation due to small change in alloying elements in different alloys and due to heating rates in the same alloy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call