Abstract

The treatment of the bacterial arthritis of the joints is still a great challenge for orthopedic surgeons and rheumatologists. Aerobic Gram-negative bacteria are involved only in 20–25 % of cases. The inadequate therapy can cause cartilage destruction and can result in severe osteoarthritis of the affected joint. The aim of this study was to demonstrate and follow the destruction of the joints’ hyaline cartilage by calorimetric method. We induced experimental septic arthritis in knee joints of seven New Zealand rabbits by a single inoculation of Escherichia coli ATCC 25922 culture (0.5 mL cc. 108 ± 5 % c.f.u.). The duration of this experiment was 7 days from the first to the last injection. After euthanizing the first subject, all other animals were given an overdose of anesthetics and samples were isolated from the cartilage of the femurs by surgical intervention for calorimetric measurements. The DSC scans clearly demonstrated the development of infective structural destruction in the cartilage from the first to the tenth day of incubation. In case of healthy control the melting temperatures (T m) were: 57 and 63.1 °C and the total calorimetric enthalpy change (ΔH) was 0.37 J g−1. After the third day, the enthalpy increased extremely (3.67 J g−1), the two transition temperatures shifted toward lower temperature: 47.7 and 62.3 °C. At the fifth day, the effect of infection is culminated with T m = 62.2 °C and a further elevation in ΔH (3.75 J g−1). These results can indicate a dramatic change of the structure of rabbit cartilage between the third and fifth days. Therefore, the time elapsed seems to be critical and possesses clinical relevance, since by the sixth day, ΔH decreased to 2.6 J g−1 with a practically unchanged melting temperature. Between the sixth and tenth days, significantly increased melting temperatures (64.9 °C) were observed with decreased (3.38 J g−1) calorimetric enthalpy. In conclusion, calorimetric measurements have been proven to be a reliable method in the measurement of cartilage destruction, caused by Gram-negative septic arthritis.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call