Abstract

Abstract Models of differentially rotating compressible deep spherical shells are computed according to the method of Belvedere and Paterno (1977): the heat transport is entirely convective, small-scale motions are parametrized by a thermal diffusivity and a kinematic viscosity, and the limit of slow rotation and large viscosity is considered. In order to adapt the resulting differential rotation to the observed equatorial acceleration of the Sun, the heat transport must be more effective in the vicinity of the equator. In all models the latitude dependence of the transport coefficient induces meridional circulation in the form of a large cell, with rising material at high latitudes and sinking material near the equator. On top of this cell, one or two thin countercells develop in a minority of cases. Large pole-equator temperature differences and meridonal velocities at the surface are obtained when the Prandtl number is 1. But values of, say, 1/10 are sufficiently small to allow the models to be applied...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.