Abstract
Contemporary three-dimensional physics-based simulations of the solar convection zone disagree with observations. They feature differential rotation substantially different from the true rotation inferred by solar helioseismology and exhibit a conveyor belt of convective “Busse” columns not found in observations. To help unravel this so-called “convection conundrum”, we use a three-dimensional pseudospectral simulation code to investigate how radially non-uniform viscosity and entropy diffusivity affect differential rotation and convective flow patterns in density-stratified rotating spherical fluid shells. We find that radial non-uniformity in fluid properties enhances polar convection, which, in turn, induces non-negligible lateral entropy gradients that lead to large deviations from differential rotation geostrophy due to thermal wind balance. We report simulations wherein this mechanism maintains differential rotation patterns very similar to the true solar profile outside the tangent cylinder, although discrepancies remain at high latitudes. This is significant because differential rotation plays a key role in sustaining solar-like cyclic dipolar dynamos.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.