Abstract

It is argued that differential rotation of the photospheric magnetic fields will induce currents in the corona. The work done against surface magnetic stresses will increase the energy content of the coronal magnetic field. The electrical conductivities are high and the foot points of field lines move with the differential rotation. The force-free field equations are solved with this constraint to obtain a minimum estimate of the energy increase for a quadrupole field. During a solar rotation the magnetic energy increases by 25%. Local release of this energy in the corona would have a significant effect. The expansion of field lines as a result of the differential rotation should increase the amount of flux and the field strength in the solar wind region.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.