Abstract

AbstractWe extend to the lower main sequence stars the analysis of convection interacting with rotation in a compressible spherical shell, already applied to the solar case (Belvedere and Paterno, 1977; Belvedere et al. 1979a). We assume that the coupling constant ε between convection and rotation, does not depend on the spectral type. Therefore we take ε determined from the observed differential rotation of the Sun, and compute differential rotation and magnetic cycles for stars ranging from F5 to MO, namely for those stars which are supposed to possess surface convection zones (Belvedere et al. 1979b, c, d). The results show that the strength of differential rotation decreases from a maximum at F5 down to a minimum at G5 and then increases towards later spectral types. The computations of the magnetic cycles based on the αω-dynamo theory show that dynamo instability decreases from F5 to G5, and then increases towards the later spectral types reaching a maximum at MO. The period of the magnetic cycles increases from a few years at F5 to about 100 years at MO. Also the extension of the surface magnetic activity increases substantially towards the later spectral types. The results are discussed in the framework of Wilson’s (1978) observations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.