Abstract

Pharmacological activities of drugs are impaired during inflammation because of reduced expression of hepatic drug-metabolizing enzyme genes (DMEs) and their regulatory nuclear receptors (NRs): pregnane X receptor (PXR), constitutive androstane receptor (CAR), and retinoid X receptor (RXRα). We have shown that a component of Gram-positive bacteria, lipoteichoic acid (LTA) induces proinflammatory cytokines and reduces gene expression of hepatic DMEs and NRs. LTA is a Toll-like receptor 2 (TLR2) ligand, which initiates signaling by recruitment of Toll-interleukin 1 receptor domain-containing adaptor protein (TIRAP) to the cytoplasmic TIR domain of TLR2. To determine the role of TIRAP in TLR2-mediated regulation of DME genes, TLR2(+/+), TLR2(-/-), TIRAP(+/+), and TIRAP(-/-) mice were given LTA injections. RNA levels of the DMEs (Cyp3a11, Cyp2b10, and sulfoaminotransferase), xenobiotic NRs (PXR and CAR), and nuclear protein levels of the central NR RXRα were reduced ∼ 50 to 60% in LTA-treated TLR2(+/+) but not in TLR2(-/-) mice. Induction of hepatic cytokines (interleukin-1β, tumor necrosis factor-α, and interleukin-6), c-Jun NH(2)-terminal kinase, and nuclear factor-κΒ was blocked in TLR2(-/-) mice. As expected, expression of hepatic DMEs and NRs was reduced by LTA in TIRAP(+/+) but not in TIRAP(-/-) mice. Of interest, cytokine RNA levels were induced in the livers of both the TIRAP(+/+) and TIRAP(-/-) mice, whereas LTA-mediated induction of serum cytokines was attenuated in TIRAP(-/-) mice. LTA-mediated down-regulation of DME genes was attenuated in hepatocytes from TLR2(-/-) or TIRAP(-/-) mice and in small interfering RNA-treated hepatocytes. Thus, the effect of TLR2 on DME genes in hepatocytes was mediated by TIRAP, whereas TIRAP was not involved in mediating the effects of TLR2 on cytokine expression in the liver.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.