Abstract

Hypothalamic GnRH is a decapeptide that plays a pivotal role in mammalian reproduction by stimulating the synthesis and secretion of gonadotropins via binding to the GnRH receptor on the pituitary gonadotropins. It is hypothesized that sex steroids may regulate GnRH I (a classical form of GnRH), GnRH II (a second form of GnRH), and GnRH I receptor (GnRHRI) at the transcriptional level in target tissues. Thus, in the present study a role for progesterone (P4) in the regulation of GnRH I, GnRH II, and GnRHRI was investigated using a human neuronal medulloblastoma cell line (TE671) as an in vitro model. The cells were transfected with human GnRHRI promoter-luciferase constructs, and promoter activities were analyzed after P4 treatment by luciferase and beta-galactosidase assay. The mRNA levels of GnRH I and GnRH II were analyzed by RT-PCR. Treatment of TE671 cells with P4 resulted in a decrease in GnRHRI promoter activity compared with the control level in a dose- and time-dependent manner. Cotreatment of these cells with RU486, an antagonist of P4, reversed P4-induced inhibition of GnRHRI promoter activity, suggesting that the P4 effect is mediated by P4 receptor (PR). In the cells transfected with a full-length of PR A- or PR B-expressing vector, overexpression of PR A increased the sensitivity toward P4 in an inhibition of GnRHRI promoter, whereas PR B increased transcriptional activity of GnRHRI promoter in the presence of P4. However, PR B itself did not act as a transcriptional activator of GnRHRI promoter. Because TE671 cells have been recently demonstrated to express and synthesize two forms of GnRHs, we also investigated the regulation of GnRH mRNAs by P4. In the present study, P4 increased GnRH I mRNA levels in a time- and dose-dependent manner. This stimulatory effect of P4 in the regulation of GnRH I mRNAs was significantly attenuated by RU486, whereas no significant difference in the expression level of GnRH II was observed with P4 or RU496. Interestingly, although the expression level of PR B was low compared with that of PR A, P4 action on the GnRH I gene was mediated by PR B. In conclusion, these results indicate that P4 is a potent regulator of GnRHRI at the transcriptional level as well as GnRH I mRNA. This distinct effect of P4 on the GnRH system may be derived from different pathways through PR A or PR B.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.