Abstract

Overactivation of the nuclear enzyme poly(ADP-ribose) polymerase-1 (PARP-1) plays a key role in the mechanisms responsible for neuronal death. In the present study, we examined the effects of the PARP-1 inhibitor 3,4-dihydro-5-[4-1(1-piperidinyl)buthoxy]-1(2H)-isoquinolinone (DPQ) in two models of N-methyl-d-aspartate (NMDA)-induced neurotoxicity. The exposure of mixed cultured cortical cells to 300 μM NMDA for 10 min induced a caspase-dependent type of apoptotic neuronal death. Conversely, exposure to 2 mM NMDA for 10 min led to the appearance of morphological features of necrosis, with no increase in caspase-3 activity and depletion in adenosine triphosphate (ATP) levels. DPQ (10 μM) reduced the NMDA-induced PARP activation, restored ATP to near control levels and significantly attenuated neuronal injury only in the severe NMDA exposure model. Similar results were obtained when pure neuronal cortical cultures were used. PARP-1 activation thus appears to play a preferential role in necrotic than in caspase-dependent apoptotic neuronal death.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.