Abstract
It is known that ATRA promotes the development of TGF-β-induced CD4(+)Foxp3(+) iTregs, which play a vital role in the prevention of autoimmune diseases; however, the role of ATRA in facilitating the differentiation and function of CD8(+)Foxp3(+) iTregs remains elusive. Using a head-to-head comparison, we found that ATRA promoted expression of Foxp3 and development of CD4(+) iTregs, but it did not promote Foxp3 expression on CD8(+) cells. Using a standard in vitro assay, we demonstrated that CD8(+) iTregs induced by TGF-β and ATRA were not superior to CD8(+) iTregs induced by TGF-β alone. In cGVHD, in a typical lupus syndrome model where DBA2 spleen cells were transferred to DBA2xC57BL/6 F1 mice, we observed that both CD8(+) iTregs induced by TGF-β and ATRA and those induced by TGF-β alone had similar therapeutic effects. ATRA did not boost but, conversely, impaired the differentiation and function of human CD8(+) iTregs. CD8(+) cells expressed the ATRA receptor RAR and responded to ATRA, similar to CD4(+) cells. We have identified the differential role of ATRA in promoting Foxp3(+) Tregs in CD4(+) and CD8(+) cell populations. These results will help to determine a protocol for developing different Treg cell populations and may provide novel insights into clinical cell therapy for patients with autoimmune diseases and those needing organ transplantation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.