Abstract

Increases in endothelial cell permeability and production of matrix-degrading enzymes are two early steps in the angiogenic process. Factors such as vascular endothelial growth factor (VEGF) and histamine induce the angiogenic process through alterations in both permeability and proteolysis. We hypothesized that beta-catenin acts as a positive regulator of MMP-2 and MT1-MMP transcription following VEGF or histamine stimulation. Rat microvascular endothelial cells were exposed to VEGF or histamine overnight and MMP-2 protein production was assessed by gelatin zymography. Latent MMP-2 protein levels were increased following VEGF and histamine treatment as were MMP-2 mRNA transcript levels. Endothelial cells exposed to VEGF and histamine had an increased level of nuclear beta-catenin, which was sensitive to inhibition of the PI3-kinase signaling pathway. Promoter assays indicated increased transcriptional activity of both MMP-2 and MT1-MMP in endothelial cells co-transfected with luciferase reporter constructs and beta-catenin. Inhibition of beta-catenin signaling with inhibitor of catenin and T cell factor (ICAT) revealed that the VEGF-induced increase in MMP-2 mRNA is beta-catenin dependent. Interestingly, while MMP-2 mRNA levels increased in response to histamine H1 or H2 receptor activation, significantly larger increases were observed in cells co-treated with ICAT and histamine or the histamine receptor agonists, HTMT and dimaprit. While both VEGF and histamine increase nuclear beta-catenin and MMP-2 production, the role of beta-catenin in MMP-2 regulation differs between the two stimuli.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call