Abstract

RNA epigenetics is an emerging field to study the post-transcriptional gene regulation. The dynamics of RNA epigenetic modification have been reported to associate with many human diseases. Recently developed high-throughput technology named Methylated RNA Immunoprecipitation Sequencing (MeRIP-seq) enables the transcriptome-wide profiling of N6-methyladenosine (m6A) modification and comparison of RNA epigenetic modifications. There are a few computational methods for the comparison of mRNA modifications under different conditions but they all suffer from serious limitations. In this work, we develop a novel statistical method to detect differentially methylated mRNA regions from MeRIP-seq data. We model the sequence count data by a hierarchical negative binomial model that accounts for various sources of variations and derive parameter estimation and statistical testing procedures for flexible statistical inferences under general experimental designs. Extensive benchmark evaluations in simulation and real data analyses demonstrate that our method is more accurate, robust and flexible compared to existing methods. Our method TRESS is implemented as an R/Bioconductor package and is available at https://bioconductor.org/packages/devel/TRESS. Supplementary data are available at Bioinformatics online.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.