Abstract

Urbanisation is one of the most dramatic forms of land use change which relatively few species can adapt to. Determining how and why species respond differently to urban habitats is important in predicting future biodiversity loss as urban areas rapidly expand. Understanding how morphological or behavioural traits can influence species adaptability to the built environment may enable us to improve the effectiveness of conservation efforts. Although many bat species are able to exploit human resources, bat species richness generally declines with increasing urbanisation and there is considerable variation in the responses of different bat species to urbanisation. Here, we use acoustic recordings from two cryptic, and largely sympatric European bat species to assess differential responses in their use of fragmented urban woodland and the surrounding urban matrix. There was a high probability of P. pygmaeus activity relative to P. pipistrellus in woodlands with low clutter and understory cover which were surrounded by low levels of built environment. Additionally, the probability of recording P. pygmaeus relative to P. pipistrellus was considerably higher in urban woodland interior or edge habitat in contrast to urban grey or non-wooded green space. These results show differential habitat use occurring between two morphologically similar species; whilst the underlying mechanism for this partitioning is unknown it may be driven by competition avoidance over foraging resources. Their differing response to urbanisation indicates the difficulties involved when attempting to assess how adaptable a species is to urbanisation for conservation purposes.

Highlights

  • Urbanisation is one of the most dramatic forms of land use change

  • We recorded a total of 1,584 P. pygmaeus passes (67% of all bat passes) in 28 of the woodlands, and 642 (27%) P. pipistrellus passes in 23 woodlands

  • Our results indicate that P. pygmaeus appear to be using woodlands with low clutter and understory growth relatively more intensely than P. pipistrellus, despite both species having similar wing shapes and echolocation calls which make them well adapted to foraging along woodland edges and relatively open habitats [43]

Read more

Summary

Introduction

By 2050 it is expected that 70% of the world’s population will live in urban areas, this expansion will require rapid urban growth which can fragment, destroy or degrade existing natural ecosystems [1]. This can lead to reductions in species richness, diversity, and changes in community composition within the urban landscape Morphological or behavioural factors influence how species respond to the urban landscape, and these traits have been used to classify species as ‘urban avoiders’, ‘urban utilizers’ or ‘urban dwellers’ [5], in reality there is likely to be a continuous spectrum of adaptability Understanding where along this spectrum a species lies will help determine the extent of conservation action required

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call